

I

ABSTRACT

-

We consider preemptive scheduling of N tasks on in processors;
processors have different speeds, tasks require amounts of work which
are exponentially distributed , with different parameters. The policies
of assigning at every moment the task with shortest (longest) expected
processing time among those not yet completed to the fastest processor
available, 2nd shortest (longest) to the 2nd fastest etc., are examined ,
and shown to minimize expected values of various cost functions. As
special cases we obtain policies which minimize expected flowtime,
expected makespan and expected lifetime of a series system with m
component locations and N spares.

5~CESStC~ ~L —

M115 ~T : ~e SectIcs~~
ooc huff Section 0
WtANNOUNC~D 0
jUSTIFICATION

01st AVPJL. and/or SPECIM.

—

- . ~~~~~~~~~ .~

SCHEDULING TASKS WITH EXPONENTIAL SERVICE TIMES ON NONIDENTICAL
PROCESSORS TO MINIMIZE VARIOUS COST FUNCTIONS

by

Gideon Weiss and Michael Pinedo

1. INTRODUCTION

Consider the following situation: processors 1, ..., in are avdilable

to process tasks 1, ..., N . Task j needs an amount X~ of processing ,

where X~ is a random variable with an exponential distribution , with

parameter . The processing can be done by any of the processors , and

preemp tions and switches of processors are allowed . Processor i has

speed s. . The processing of task j requires for completion a total

time of t1, ~~~~~~~~
t on processors 1, ..., m respectively , so that

t s + • • • + t s K . . X , ..., X are assumed to be independent1 1 m m 3 1 n
of each other , and independent of the manner in which processors are

assigned to tasks. Starting at time 0 , a cost per unit time g(U}

is incurred at time t , where (U} C (1 , ..., N} is the set of un-

completed tasks at t . Thus for every scheduling rule (which determines

for every {U} C (1, . . ., n} of uncompleted tasks at t , which of the

tasks should be processed on which processor) there is an expected cost

over [0,°°) . We want to find a scheduling rule , which minimizes the

expected cost.

Let CU }
~~ ~~

where ~ A > •.. A 4 . We consider

~i. ~2

two rules in particular : SEPT requires task to be processed on processor

i , for I < mm (k,m) ; LEPT requires task
~k j+l on processor i for

i < mm (k,m) . In other words , both rules use only the fastest processors,

I

and process on them tasks ordered by their expected length ; SEPT assigns

the task with the Shortest Expected Processing Time to the fastest processor ,

LEFT assigns the task with the Longest Expected Processing Time to the

fastest processor. We find for a variety of cost rates g that SEPT

or LEPT minimizes the expected total cost.

In particular we find SEPT is optimal for the following scheduling

problems : to minimize the sum of completion times (flow time); to

minimize the weighted sum of completion times where the weight of the

completion of task i is W
j

and whenever A~ > A k . we have >

and to minimize the sum of the first k completion times. LEPT is

optima l for these scheduling problems : to minimize the last completion

time (makespan) ; and to minimize the total amount of processing (times

multiplied by speeds) done by processors 1, ..., r , Cr < m) , when

it is assumed that for any k < m processors 1, ..., k are used as

long as ui > k

The situation described above can also be interpreted as a reliability

problem , assuming a system with m component locations , and N spares.

Component location i causes the spare to wear out at rate s~ . When

spare j operates in locations 1, ..., in for total times t1, ~~~~~~

berore it fails , then X . t s + ‘ + t s , and K has exponential
j 1 1 m m j

distribution with rate . We show that if the system is a series

system , then putting the best component (smallest A) in the location

with highest wearout , the second best in second highest wearout location ,

etc., (the equivalent of LEPT) maximizes the expected system lifetime .

3

The present paper generalizes results of [2], [3], [5], which

deal only with identical processors , and with the minimization of f low—

time and of makespan. Bruno and Downey [2] seem to have the earliest

results, showing that SEPT and LEPT minimize flowtime and makespan for

two Cm = 2) identical processors. Frederickson [3] generalizes these

results to any m identical processors. In the present paper we follow

some of the derivations used by Frederickson , but we use a more streamlined

dynamic programming formulation which dispenses with some of the exchange

arguments used by Frederickson and by Bruno and Downey . A slightly

different dynamic programming formulation is used by Van der Heyde [5]

to show that LEPT minimizes tnakespan for in identical processors.

Pinedo and Weiss {~] use a different method to prove that LEPT minimizes

makespan for in = 2 Identical processors and also discuss a case in

which the amount of processing has a hyperexponential distribution.

Eugene L. Lawler (private communication) has suggested the investigation

of nonidentical processors, and Sheldon M. Ross has suggested the reli—

abilit~’ problem .

The paper is organized as follows : Section 2 contains a formulation

of the problem as a dynamic programming problem and a derivation of a

necessary and of a sufficient condition for the optimality of a priority

policy . Section 3 and 4 contain sufficient conditions on the cost rate g

under which SEPT or LEPT are optimal. Section 5 lists the applications

of Section 3 and 4, and some counterexamples. A discussion of the suffi-

cient conditions , and of some open problems is contained in Section 6.

-

- T

‘p

4

2. DYNAMIC PROGRAMMING FORMULATION AND CONDITIONS OF OPTIMALITY

At time t = 0 we have tasks (1, ..., N} and processors

{l , ... , m} . We order the processors to have s~ > S
2

> > s~

We shall assume throughout that in > N . Most practical situations

can be reformulated so as to have m > N by adding processors with

speeds s = 0 . Tasks Cl , ..., N} are then assigned to processors ,

and processed until a task is completed , and a new assignment of processors

is chosen. We consider t = 0 and the times at which tasks are completed

as decision moments. The state U at a decision moment is the set of

uncompleted tasks, U c Cl , ... , N} . The set of actions available in

state U , J(U) is defined as:

J(U) = Cf f is a 1—1 function from U into Cl , ..., m}}

For state U and action f on J(U) , the next decision moment occurs

time T later , where T is an exponential random variable with rate

A
f
(U) = A 5

f () . The state at the next decision moment is U’
jrU ~

where:

P(U’ = U - {k }) = k ~ U

The cost incurred between the two decision moments is g(U) T , where

g is a set function , with g(q) = 0

Note that at decision moment t and state U , the effect of the

choice of action f does not depend on the state at t , ~
[O ,t)

This corresponds to the situation described in the introduction , because

of the memoryless property of the exponential distribution.

---- - — -- --~~
_ _ - -

~~~~~
- -~~~~- - .--—-—-



p
5

At each decision moment t , when the state is U , a policy ir

specifies which action from J(U) should be taken. We use G(U ,t)

to denote the expected value of the cost incurred over (t ,ro) , starting

with state U at the decision moment t and using policy iT . We p

wish to find ~ which minimizes G (Cl , ..., N } ,O) . At time t and

state U a stationary policy will choose an action from J(U) independent

of t . For such policies G(U ,t) G(U ,O) ; we will use G (U) to

derote G(U ,O) . The calculation of the expected cost GiT
(U) , when ir

chooses action f at U can be done using the recursion relation :

g (U) + ~~ A
1

Sf ( J ) G ( U  — Cj})
(1) C (U’ — j t U

it 
/ — 

A f (U)

We call an action f c J(U) fast if for u i = n f is 1—1 from

U to 1, ..., n . A policy 11 is fas t  if it uses onl y fas t  actions

(i .e . , since s1 > S
2 

> > S only the fastest processors are used).

We wil l  call a policy a p r io r i ty  policy if for  some par t icu lar  renumbering

of the tasks as Cl , ..., N) , fo r eve ry s tate U = (ii , ..., i }  wher e

1
1 

< < in , 
IT takes the action f ( i .) = j , j = 1, . . . , n •

Let ~ be a priority policy. Let U be an arbitrary fixed subset

of (1, ..., N) . We shall make the following simplifications in notation :

we shall renumber the tasks in U , in order of their priorities according

to it , as U — Cl , ..., n} . Thus the action f chosen by it at U

will be f(j) j for 1 1, ..., n . We shall also use the following

notations: let A f (U) , C — G (IJ) , Ck 
— G (TJ — {k })

k-i n
• k 

= ~ ~ + A s
1 

— A f (U — (k } )  , g g(U) , g~ g (U — (k })
1 .1 j—k+l ~ -~

and G
ki 

G ( U  — {k ,2~}) . The recursion (1) in this notation gives:

- 
-j ’ . -- ~ —‘-.



6

g ±  ~ A . s C
~ ~(2) G =  .

(3) Gk 
= 

~~ + A .sJ
C

lk
: 

~ 
X .s

1 lGj k

So far we have discussed policies which allow decisions only at

t = 0 and at task completion times ; we denote these by IF . We could

also consider a much wider class of policies , IP , which allows decisions

at any time t c [O,~ ) . The action space for these policies , at each t

and in the state U , would still be J(U) . We note then that IF in—

cludes all the stationary policies in IF . We will not consider IF ,

because of difficulties in defining the process under general ii IF .

Instead we will consider for a fixed ~ the class iF~ of policies which

allow decisions at ~~~~~~ ..., and at task completions. In IF~ by

[1]

—‘-i



7

there exist optimal policies , there exists a stationary optimal polic y ,

and a necessary and sufficient condition for ~t to be optimal is

that ~ is excessive . If IT is stationary (that is It t IF) it

will then be optimal in IF
0

We say that policy 11 is excessive in IP~ if for any decision

moment t and any state U , we can show that  for  all f c J (U)

Cf (U , t )  > C ( U , t)  . Here G f i i T
(U , t)  is the expected cost of taking

action f at t , and continuing with policy IT from the next decision

onwards.

To check that a stationary policy it IF is optimal among all

of IF it is therefore sufficient to check that there exists ~ such
0

that for every 6 < , every state U , and every f c J(U)

G
f1

(U) > G (U) where action f is taken from 0 to 6 or the first

comp letion , which ever comes first , and it is used from then on.

We derive now a condition for the optimality of a priority policy ~r

Theorem 1:

Let ii be a priority policy. Assume s
1 

> s~ > • •
~~ 

> g > 0

m > N  .

(i) it is a unique optima l policy if for every arbitrary fixed I’

(4) C — G
k 

> 0 k = 1, ..., n

(5 ) A k (G — Ck ) — A 1 (G — G
~

) > 0 k < Z

• ( i i )  Conditions ( 4 ) ,  (5) as weak inequali t ies  are necessary for  the

op t ima l it y of iT

- ‘~~~,.



8

Proof:

( i )  We want to show tha t  the re exis ts  t. such that if 6

fo r any act ion f ’  t J ( U )  if f ’  is taken f rom 0 to the

minimum of 6 and the f i r s t  comp let ion , and iT is used f ro m

then on , then ( 4) and (5) imp l y C f ? i I T (U)  > G . This wi l l  imp ly

strong excessivit~, of ~T in IF
A , and hence unique  o p t i m a l i t y

in IF and t h e r e f o r e  in IF . For an arbitrary action f’
0

in J ( U )  , we can wr i t e

(6) C
f !1 

= • + :~ óA .Sf~~(.)
G . + (1 — ~ ~ A . S

f ( . )
)G + o( 6 )

The term o(6) includes costs incurred over (0,6) when there

is an event in (0,6)  , costs incurred over (5 ,cc) if there is

more than 1 even t in (O ,~~) , and correc tion terms for the

probabili ties that no event occurs in (0,5) or that task j

is comp leted in (0,6)

Assume f’ ~ f . We will look at two cases:

Case 1:

There ex ists k n such tha t f’(j) ~ k for  any j . In tha t

case there exists i such that f’(i) = 2. > n . We have >

Def ine

~f’(j) j ~ i
f’’(j) —

l = i .

__________________ —4



9

Case 2:

.., f(n)} = Cl , ..., n} . In this case there ex ists

1 < k < ~ < n such that f ’ ( k )  > f ’ ( Z )  . Let S
fI (k ) 

= s’ ,

= s ’ ’  , where s ’’  > s’ . Define :

1 # k,Z
f ’ ’ ( j) = ~ f ’ ( k )  1 =

( f ’ ( i )  j = k .

We use (6 ) to obtain , in Case 1

(7 ) C f 1 1  - Gf 1 1 1  = 6A j (sk 
- s2. ) (G - C .) + o ( 6 )

and in Case 2

(8) C~ , - G
f ‘ ‘  H = 6 (s ’’  - s ’ ) ( X

k(G 
- G

k
) - A

2.
(G - G 2.)) + o (6 )

By (4) and (5) and by S
k 

> s2. , s ’’  > s’ , we then have :

G~~~1 
— C

f ! , 1  = JK + o ( S )  , K > 0

By repeating this argument for  E ’~ and obtaining f ’ ’ ’  etc., we get

in a f i n i t e  number of steps action f . So we have :

G f , I I t _ G
it = o K l + o ( 6 )  I(i > O

and we can now find ~ , such that for  all 6 , , C , — G > 0f f f i t  it

Repeat ing for  all actions in J (U)  (which is f in i t e )  we obtain

= mm for  which Cf 
— G > 0 , fo r all 6 < ~ , f1 c J(U)1 1 iT



10

( ii ) Assume now , in contradiction to the weak inequalities (4), (5)

that :

Case 1: C — Gk 
< 0 fo r some k or:

Case 2: A
k
(C — Ck

) — A
2.

(C — C 2.) < 0 fo r some k < 9.

We can define in Case 1:

j # k
f ’ ( j )  = -

~ (m > N > n )
! m  j k

and in Case 2:

j ~ k,2.

(2. j = k

and use (7)  or (8) to show G
f .1

(U )  - G < 0 fo r 6 small enough , which

con t r ad i c t s  the o p t im a l ity . •



11

3. OPTIMALITY OF SEPT POLICIES

Let the tasks be orde red by A , > A
2 

> • .  > A
N , 

and let iT be

the priority policy for that ordering ; it is a SEPT policy.

Lemma 1:

Let it be a priority policy . Assume g
~~) = 0 and g (U ) > g(V) if

U DV . Then, for arbitrary fixed u (with the above simplified notation),

(9) G _ G
k~~~ O k l , .. . , n ,

and g(U ) > g(V) if Ii J V implies :

(10) G — Gk 
> 0 k = 1, ..., n

Proof:

The proof is by induction on n , the size of U

Induc tion Base, n = 2

For n = 2 , we have :

C = 

g~ l , 2 } + A
1
s
1

G
1 

+ A
2s2G 2

+

G g{ 2 }
1 A~ s1

G = 
g{ 1}

4 2

So

C - G1 
= 

(
~(1~ 2} - —

~~ g{2 } + 
~~~~ 

~{l})/(A i
s
i

+ A
2s2
) >

> (g{ 1,2i — g {2 })/ (A 1s1 + A
2s2

) > 0

_ _ _ _ _ _ _ - - - ~~~~~~~~
. - -

~~

12

and :

G - C2 (
~{l~ 2} + g {2 } - g {l }) / (Aisi + A 2 52) >

> (g{ l , 2 } - g{1})/(A
1
s
1

+ A
2
s
2
) > 0

General n

We wi ll show the induction argument which proves (10) . The proof

for (9) is similar. We shall assume that (10) holds for sets of size

< n - 1 . Write:

A s A .s.
(11) G = ~~~ + ~~

k
G
k
+

.~~~ A
C
jj~~k

(12) G
k

=
~~

+
A

A

A
k Gk

+
k A .s.

G ik +

~

A .s.1
C ik

So (notmn ~ X
k
S
k

+ A
k

— A =

~~

X
1

(s 1 1 — S
.))

C - Gk = +
~

(C . - G .k) +

~

X
1

(s 11
- s .)

(Gk
- G ik) >

since g > s
1~ 1 ~

and C
1

> G ik , Ck
> Cik

by the induction

assuinption .U

We now prove

Theo rem 2:

The SEPT policy ~ is optimal if g sa tisf ies , for every

U C (1, . . . , N)

- --~~~~~~~~~~- - --- __ _ _ _-

~~~

-- --



13

( 13) g( cp ) — 0 , g (U) > 0 -

(14)  g (U  — Ci)) > g (U — {k }) k < 2. , k , 9. c U

(15) g(U) — g(U — (k}) — g(U — {i}) + gCU — {k,i}) > 0 k , 2. c U

Proof:

We note first by (13) and (15) that

(16) G(U)  > G(V) for  U 2 V

Assume f i r s t tha t A
1 

> A
2 

> . . > A
N 

> 0 S
1 

> S~~ > • > > 0 , rn > N , and

that (13) — (15) and hence (16) hold as strict inequalities. We then

show that iT is the unique optimal policy.

Let U be an arbitrary f ixed subse t of {1, ..., N } then we know

from the prec eding lemma that (10) holds. Using the above simplified

notation we now will show :

(17) G — G
k 

— G
9. 

+ G
kz 

> 0

(18) A k l (G — Gk l ) — A
k

(C — G
k

) > 0

The proof is by induction on n , the size of U

Induction Base, n = 2

For n — 2 we have (noting that C12 — 0)

g{1 ,2} — g(l} — __a g {2 }
$ . 

G - G  — C., — 
1 > 0

I. ~. A
1
s
1 

+ A
2
5 2

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - —



14

which proves (17) and

(A
1 — 

A
2 )s 1gC 1 , 2 1 — 

~~l 
+ 
~~~ 

(A
1
gC2} —

\ (G — G,) — A 0(G — C ,) =
I ’1
“ ~ “2~

jS

(A
1
s
1

+ A
2s2
)gCl } - (A

2s1
+ A

1s2)gC2}(19)
‘~ +~~

>

~~~~~~ 
A

2
S~~ JS

1

(A
1 - 

A
2
)(s

1 - 
s
2

)g{2} 
> 

~(A
1
s
1 
+

which proves (18).

General n

We shall assume (17) and (18) hold for sets of size < n — 1

To prove (17) write:

(20) C
9. 

= + 

A A
2. C

9. 
+ 

____ 

~ + 
n A

1
s1 1  

G1 1  A 
~~ ~~~~ 

A ji

g A — A  k—l A .s . 9.—i A s .
(21) G

ki 
= 

A + 
A 

ki CkL + 
~~~ 

A
~ G

iki
+

j=~+l
1 ~~~1 G

iki

n A s
V —1

~~~~
2
GA kQj=2.+1 - -

We have, substituting (11), (12), (20), (21):



V

15

A ( G — G  — G  + G  ) =k 9. ki

+ ~ A s ( G  - G  — G  + G  )
j~k,9. ~ ~ 

j jk ji jk9.

n—i
+ ~ X(s — s ) ( G  G C + G  )
j=k+i j  j-l j  k 

- 

jk 
- 

ki jki

(22)
n

+ ~ X ( s s)(G — C  — G  + G  )
j=9.+1 ~ 

— 

1 9. ji k9. jk9.

n-i
+ ~~ 

(s
1 1  

- si)[A . (G
ki 

- G .ki ) - A i+l(GkZ 
-

+ A ( s  — s ) (G  — G  )> 0
n n-i ti k kn

since all terms are > 0 , the first by (15), the next three by (17)

for  (n — 1) , the fifth by (18) for (n — 1) , the last by

(10) .

To prove (18) wri te:

k- 2

~ A s {A 
— 

(C . — C. 
— 

) — A (G — C )}
k i  j  jkl k j jk1=1 ~

n
A (C - C . )}C A (G - G  )+ ~ A ~ ~~ k-i j  jk—l 

— 

k j jkj=k+i ~

(A k_i - A
k
)
~
AG - g — A k l sk i ck l  

- X
kSk

Gk

n
+ ~ A ( s  — s ) G
j—k+l ~ ~~~ ~ 

- A k l {A k_lGk_l -

- A
k
s
k i

ck l k
} + A

k~~k
G
k 

- - A
k l sk l Gk l k }

Hence by rearranging and collecting terms :

~~~ ~~~~~ 
..

~.:
- _: . ~~ - - —~

16

A
k

{A k i (G - Gk i
) - A

k
(G - Gk

)}

=
~~

A
j
s
j

{A
k i (G . - G

i k l
) - A

k
(G
I

- Gjk
) }

(23) +
1=11

A
1
s
1 l

(A
k l (G

j
- G

i k i
) - A

k
(G . - C .k) }

I

A k i A
k I+ (A

k l
- A

k)[~~
-

A
k i

- A
k

~~~_ 1 
+ A

k i  
- A

k kj

- 

~j~ k 
A
1
s
1
(G - G

1
) - 

~-L1 Ajsj i (G - C
1)}]

The first two terms are positive by (18) for (n — i) . We stiil need

to show :

A
k i  A

kg - 
(A
k l  

- A
k
) ~~~_ 1 + A k_i - A

k k

(2~)

> 
~~ A .s.(G - C ) - A s 

1
(G - C )

j=k -~ ~ j=k+i ~

By (14)

A k_ i A
k

— 
A k l  

- A
k 

k—i 
+ A k l  .-ç ~~ > g —

but:

n n
g — AG — ~ A .s4G4 = 

~~ A 4s, (G — G 4)
j]. ~ ‘ j=l -~ -~

= 
~~ ~

.sj
(G
k 

- G
ik

) + 
j-k+l 

A
l
s
i l~~

’k 
- C

ik
)

_________ ~~~~~~~~ •
~~~~~~~~~ -

.
~~~- - - - -  .~~~~~~~± _ _ _1~



17

so:

- 

~k 
= A s.(G - C.) - 

~~ 
X .S . i (G - C .)

j=k ~ ~ j=k+i ~

k-i
+ ~ A .s.(G - C . - C + C . )

j=l ~~~ 3 k jk

+ 

~~ 

A
1
s
1 1

(G - G
1 

- G
k 

+ C
jk
)

but the last two terms are positive by (17) for (n — 1) , which proves

(24) and hence (18). By Theorem 1, (10) and (18) imply that it is

uniquely optimai.

Suppose now we only have s~ 
> • > S

m 
> 0 , A

1 
> ... > A

N , 
and

(13), (14) and (15) only hold as weak inequalities. We can perturb

s’s and g very slightly to get strong inequalities. For the

perturbed problem , let G~ ,(U) be the expected cost under stationary

IF (of which there are a finite number). Then GC (U) < G~ , (U )

for all stationary ii ’ € . Letting the perturbation approach zero ,

we obtain G (U) < C , (U) , so it is optimal (possibly not unique)

in IF .R
0

________



18

4. OPTIMALITY OF LEFT POLICIES

Let tasks 1, ..., N be ordered so that A
1 

< A
2 

< ..~~ < A

and let it be the priority policy for that ordering; it is a LEFT

policy.

Theorem 3:

The LEFT policy it is optimal if g is of the form:

(25) g(U) c1~~1

where:

(2 6)  c = 0 , C
k 

> Ck l  k = 1,2, ..., N

and the ck
s satisfy:

( 27) 
c
k 

— ck_l 
< 

ck_i — C
k_ 2 

k = 2, ..., N ,5k-i

(whe re we let 0/ 0 stand for  0 ) .

Proof:

We shall again assume strong inequalities in (26) and (27), and

that s > s > > s > 0 , m > N , and A < A < < A . We
1 2 m 1 2 n

will show that it is uniquely optimal . A perturbation argument as in

Theorem 2 then implies optimality of it for weak inequalities. We

consider again an arbitrary fixed U , using the simpiified notation

described above.

_ _ _ _ _ _ _ _ _ _ _  - - -  _ _ _ _ _

______________ _________ —4-



V
19

We note that g(U) > g(V) > g(4) 0 if U j  V ~ . Hence by Lemma 1,

G
~~~

G
k

> O for all k

We now show that

(28) A k l (G — Ck l) — A
k

(G — G
k

) > 0 k = 2 , ..., n

by induc t ion on a •

Induction Base, a = 2

We ob tain as in (19):

A
1

(G — C
1

) — A
2

(G — C
2)

=

(s
1
+ s

2
) (A

2
g {l } — X

1
g{2}) — (A

2 —

A
1

)s
1

g {i ,2 }

(A
1
s
1
+ A 2s2)s1

• (A
2

— A
i

) { (s
i
+ s2

)c
1

— s
1
c
2
}

(A
1
s
1
+ A

2s2
)s
1

c
2 — c C — c

but , by (27), 1
<

1 0
, c,., = 0 , so:

S
2

S
1

s
1
c
2

< (s~ + s2)c
1

and (28) follows .

General n

We assume (28) holds for sets of size (n — 1) . We rewrite

A A
(23), not ing that A

k
> A

k_i g —
A

k—i
A ~~~_ 1

+
A

k
g =

k—i k k—i k

— cm_ I , and rearranging the last term , as:

— ,~~~ ~~~~~~~~~~~~~~ - -
~~~~‘

- 
~IA1jI .~~~~ . - ~~~~~~~~~~~~~~~~~~~ - -~~-—~~~~~~~



1
20

A
k
CX k l (C - Gk l

) - X
k~~ 

- G
k
) =

A .s.{A~~ 1
(G . - Cj k l ) 

- A k(G. - G .k} +

(2 9 )  n

~ 
A . s . CA (C . - G , ) — A (C . — C . ) )  +

j=k+1 ~ 
j—l k—i j  3k—i k j

- A
k l ) 

~

5 j 1

~~~~~ ~~~~~~~~~~~~~~~~~~ 

- c .)} +

The firs t two summations are positive by the induction hypothesis. We

shall show tha t

(30) s (C — G) > (c — c)
a a n n n—i

which will be sufficient to prove (28) for k = n . Assuming then (as

an inner ind uction h ypo thesis) tha t (28) holds for n ,n — 1, ..., k + 1

the third summation will be positive , and so (28) will follow for k

To show (30) we calcuiate C — C . We no te tha t be cause it is a

priority policy, the comp letion times of tasks 1, ..., n — 1 are the

same whe ther we s tar t wi th tasks 1, . . . , n or w ith tasks 1, . .., n — 1

at t = 0 . Let V(t) , t c [O ,=) , be the subse t of Cl , . .. , n — l~

of uncomp leted tasks at time t , when V(O) Cl , ..., n — i}

G_ G
~ is then the expected value of f [g(V(t) U {n}) - g(V(t))]dt

Assume that tasks 1, ..., n — 1 ~p le ted in the order

i , . . . , I , at times 0 < t ~- .•~ < t , t = 0 . Then:
1 n—i - n—i o

p

21

- =

gCi 1,
. . . , in i ~

:} - g {i
1, . ~~~~~

1
n i) (~ - e

_A
n
s
n
t

l)

g~ i2, i
1
n) - gCi 2, . . , i

1
} (- A s

1(t 2
-t

1)\ ~~n
5
n
t
l+ - \ 1 _ e jeA S

n n-i

+ .. .

(31) + ~~~~~~~~~~~

- gCi~~~~, ..., ~ (~ - e
5n_ t

~~1
t
~~
)A

n
Sn_k

k—i —A s .(t . —t .)
Ti e n n—j 3+1 3

j =0

+ . . .

n—2 —A s .(t . —t .)
+

g (n } — g(~~} ii e n n—j j+l j
A s

In the case de:c:ibed ab:ve, ... , i 1, n } - gii~~ 1
, . . . , i

1
} =

c — c . By (27), n n—i n—k n—k—i for k = 1, • .. , n — 1n—k n-k-i s s
n n—k

so by substituting

:~

n — i the expression would decrease. The te~~s

n—k n-k-imulti plying - , k = 0 , . . . , n — 1 add up to 1 , and so we have
S

a ri —k

c — c
C — C >

fl n—i
a A sa n

which proves (30) and the theorem.•

22

5. APPLIC A J ’[ONS

rn t h i s se c t ion we l i s t some problems tha t are op t imized by SEPT

or LEFT . In general we note that for the special case where = = S

N > in , SEPT and LEFT are nonpreemptive . When
~l

> > ~ preemptions

will be needed . Thus in the following problems , when = •. . = S
m

N > m , we show SEPT or LEFT to be optimal in the class of nonpreemptive

polici L-s. Also , by add ing enough processors with speed 0 , we see

that some of these will not be used by the optimal policies. Hence the

SEPT and LEPT remain optimal when we allow insertions of idle time .

(U SEPT Minimizes Expected Flow Time

~- e denote by C
1
,C2, .. ., the comp letion t imes of jobs 1, - . . , N

and by 0 < T
1 ~

... < T~ the comp letion times in their order of o c c u r r e n c e .

The ixre: ted flow tine DL a 7olicy ii is

N
F = E ~ C~ E 1 ~ T .

iT

~~~~~ 
~ \~~=~ 

-~

The cost rate that yields this is:

g ( U )  = U I

and it is easil y seen that g satisfies the conditions of Theorem 3.

(2) SEPT :~inimizes the Expected Sum of the First k Comp letions

~~ define

4 / k  ~
= E f ~ T.) k = 1,2 , .. . ,

\j=l ~

—-4-.



V

23

The cost rate which yields this is

— (a — k) for U I > (a — k)g ( U )
10 for ui (n — k)

wh ich satisfies the conditions of Theorem 3.

(3) SEPT Minimizes the Expected Weighted Sum of Comp letion Time s
(Ag reeable Weights )

Let a cost of w . > 0 per unit time be associated with task j

that is

N
G = E  ~ w ,C~

j=1 ~

We call the costs “agreeable ” if A
k 

> A 9 
W
k 

> w . The appropria te

c os t  rate is

g(U) = A W .

j~~U

The priority ordering to be used is 1 , . . . , N , such that > A k+l
and if ‘

~k 
‘
~k+1 W

k 
> Wk+i ‘ 

k = 1, - . . ,  N — 1 . Obv iousl y g(p) 0

g (U)  > 0 , g (L — Ci)) — g(U — ~k}) = Wk 
— w

9. 
> 0 for k < 9. , and

- g(U - {k)) - g(U - {2J) + g(U - {k ,~~}) = 0 , so Theorem 3 app lies.

Case 1 above is a special case of this problem with w
1 

= 1

Case 2 is not a special case of this problem . A different special case

is the sum of comp letion times of the k shortest tasks , ob tained by

W
i 

• = W
k 

1 Wk+L = • •
~~ 

= W
N 

= 0

-t



24

(4) SEPT or the “cif’ Rule Do Not Minimize the Expected Weighted
Sum of Complet ion Times In General

The “c’i” rule is the priority policy which arranges the tasks as

1, ..., N with w
1
A
1 

> w~ A
2 

> . • .  > w~A~ . When weigh ts are “agreeable ”

it coincides with SEPT. The following two counter—examples show that

ne ither SEPT nor “cu ’ are optimal in general.

( i) n ~ = 

~2 
= 1 , S

3 
= 0 (iden tical processors)

A
1

3 w
1

3

A
2

3 w
2

1

A
3

= l  w = 2

G
12 = ~ [6 + 3(1 + 2) + 3(4 + 2)] 132

G
13 = ~~[6 + 3(4+ 2) + i(i + 4)] =

= ~ [6 + 3(1 + 2) + i(i + 4)] =

so processing 1,3 first is optimal. It is neither SEPT ,

nor cu

(ii) a = 2 , s
1 

= 2 s
2 

= 1

A
1 

= 3 W
i 

= 1

G
12 = + ~~: ~: :2:

~

2

~ 

=

C
21 = 4 [ 3 + 3 x 1 + 2  ~ ] _ ~

so putting task 2 on 1 and 1 on 2 is optimal , and is not

SEPT or cu



25

(5) LEPT Min imizes Expected Makespan

The makespan is the time from 0 until all tasks are completed .

The expected makespan is:

N = E(T ) E (max (C , • . . ,  C ) )N 1 N

This is ob tained by:

(1 for U ~ 0
g( U )  =

c o  for  U = 0

which satisfies the conditions of Theorem 3.

(6) SEPT Does Not Maximize The Expected Makespan -

The following counterexampie shows that SEPT does not maximize the

expected makespan . Take

A . = io6 f 1 < i < 10~

A 
8 

= 2
10 +1

810 +2

We have 2 identical processors and allow no preemptions . Then the

schedule 1,2, ..., io8 + 2 gives an expected makespan of approximately

51 -
~~ and the schedule i08 + 1,1,2, ..., io8,io8 + 2 gives an expected

makespan of Si -
~~ . We conjecture that in the class of nonpremptive

policies the following schedule is optimal : If A
1 

> . >  A
N 

there

exists an i , 1 < i < N , such that the schedule i,i — i, ...,

2,l,i + i ,i + 2 , ..., N — l ,N maximizes the expected makespan.

- ~ ———________________________ 
-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -



26

(7) Minimization and Maximization of Expected Amounts of Work

Le t M1, ~~~~~~~~ 
M be the to tal times during which processors

1, - .., m are occup ied . For a fast policy M
1 

= T
N , 

M
2 

= TN 1  ,

M = T
N~~~ l 

(here we assume m < N) • The amount of work done by

processor k is then s
k
T
N k÷l 

. It is desired to minimize:

W E 1  ~ s.T -r ~~~~. i N—i+1
\ 1 i

This is obtained from -

+ ~~~~~~ + Sr I u ~ > rg ( U)  =
+ + s~~~ l u l  < r

It is easily seen that g satisfies the conditions of Theorem 3.

Hence 
~

.‘ is minimized by LEPT , for every r (1 < r < m) . Thus we have :

LEPT minimizes the expected amount of work done by processors

1, ..., r (s
1
M
1 
+ + 5

r
M
r) , 

among all fast policies.

Also , because E(s N + + s M ) = —i-- + •. .  + -~~
— 

, LEFT maximizes11  m m  A
1 

A
N

the expected amount of work done by processors r + 1, .. . ,  m , among

all fast policies.

(8) Maximizing the Expected Life Length of a Reliability Sys tem

Given a series system of in component locations and N > in spares,

where the spares have exponentially distributed life lengths with parameters

< A., < ~.. ~ A
N 

and the component locations cause wearout at rates

~~
- 
5
m 

it is desired to allocate spares to component locations so

as to maximize the expected system lifetime . The problem is obviously

__________ - ~~~~~~~~~~~~ •.



27

equivalent to scheduling N tasks on m processors , where only fast

policies are allowed and E(M
m

) E ( T
w~~~ i) is to be maximized .

Thus (using Case (6) with r = in — 1) , the expected lifetime of the

system is maximi zed when the best remaining component (one with smallest

U is assigned (preemptivel y) to location 1, the 2nd best to location 2,

etc.

I

,
~~~~

~,

28

6. DISCUSSION

We have derived some sufficient conditions on the cost rate g

under which SEPT or LEPT minimize total expected cost. These conditions

include the requirement that g(~) = 0 , g(U) > g(V) for U D . This

mea ns that cost decreases as the set of uncomp leted tasks decreases ,

and from the proof of Theorem 1 and Lemma 1 it seems that it is a

necessary condition for the existence of an optimal policy which is fast

(both SEPT and LEFT are fast).

The su f f i c i e n t condit ion for SEPT to be optimal is:

g (U) — g (U~) — g (U
9.

) + ~ (U~ 9.
) > 0 k ,i c U

In the proof of Theorem 3 , this is used to show that

(28) A k l (G - Ck l) > A~~(C - Gk
)

and it seems that this is the most general condition under which (28)

holds. -

The s u f f i c i e n t condi t ion fo r LEFT to be optimal is less general ,

and we conjecture that it is enough to require:

< g(U~) k ~ 9.

and

g(U) — g(U) g(U)— g (U)k k k ,i k , Q c U .
S — S

a n—i

One generalization of the problems discussed above is to allow

arrivals of new tasks. We conjecture that LEPT remains optimal , since

Ii

I

29

it minimizes makespan and thus will yield short busy periods.

Another direction to generalize the results is to look at general

distributions . The crucial question then is to find the appropriate
I

quantity by which to order the tasks. For a very special case, mixtures

of two fixed exponential random variables, SEPT minimizes flow time

and LEPT minimizes makespan [4] .

4 I

_

_

_ _ _ _ _ _ _ _ _ ____________________ ______ —4

30

REFERENCES

[11 Blackwell , David , “Discrete Dynamic Programming,” Annals of Mathematical
Statistics, Vol. 33 , pp. 719—762 , (1962).

!2] Bruno , John and Peter Downey , “Sequencing Tasks with Exponential
Service Times on Two Machines,” Technical Report , Department of
Computer Sciences , University of California , Santa Barbara ,
(197 7) .

[3] Freder~ckson , C. N., “Sequencing Tasks with Exponential Service
Times to Minimize the Expected Flow Time Or Makespan ,” Department
of Computer Sciences , Pennsylvania State University Report
CS—78—07 , (1978).

[4] Pinedo , Michael and Gideon Weiss , “Scheduling Stochastic Tasks On Two
Parallel Processors ,” (to appear).

[5 1 Van der Heyden , Ludo , “A Note on Scheduling Jobs with Exponential
Processing Times On Identical Processors So As To Minimize
Makespan ,” (to appear in Mathematics of Operations Research).

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-

~~

~-

